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The effect of birefringent disorder on the bit error rate (BER) in an optical fiber telecommunication system sub-
ject to amplifier noise may lead to extreme outages, related to anomalously large BER values. We analyze the
probability distribution function of BER for various strategies of polarization mode dispersion compensation.
A compensation method is proposed that is capable of more efficient extreme suppression of outages, which
leads to substantial improvement of the fiber system performance. © 2003 MAIK “Nauka/Interperiodica”.
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Polarization mode dispersion (PMD) is an essential
impairment for modern optical fiber systems [1–3].
Therefore, dynamical PMD compensation has become
an important subject in modern communication tech-
nology [4–7]. Optical noise generated in optical ampli-
fiers represents another impairment that may not be
reduced or compensated and, therefore, should also be
considered in any evaluation of fiber system perfor-
mance [8]. The bit error rate (BER) calculated for a given
realization of birefringent disorder by means of averag-
ing over the amplifier noise statistics constitutes an
appropriate object for characterizing the joint effect of
the two impairments. In two preceding papers [9, 10], we
have demonstrated that the probability of extreme out-
ages (BER values much higher than typical) is substan-
tially larger than one could expect from naive Gaussian
estimates singling out effects of either of the two
impairments. The natural object of interest is the prob-
ability distribution function (PDF) of BER and, specif-
ically, the PDF tail corresponding to anomalously large
BER. In [9] we have developed a consistent theoretical
approach to calculating this tail. The case when no
compensation is applied and also the effect of the sim-
plest “setting of the clock” compensation on the PDF
tail suppression have been discussed in [9]. Our inves-
tigation was then extended to study effects of the stan-
dard first- and higher-order compensations on extreme
outages [10]. In the present letter we propose a com-
pensation scheme that appears to be more efficient in
reducing the extreme outages compared to the tradi-
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tional high-order compensation scheme with the same
number of compensating degrees of freedom.

We consider the return-to-zero (RZ) modulation for-
mat, when optical pulses are well separated in time t
and thus can be analyzed as individual objects. We
represent the pulse intensity measured at the system
output as

(1)

where G(t) is a convolution of the electrical (current)
filter function with the sampling window function. The
two-component complex field Y(t) describes the out-
put optical signal (the components correspond to two
polarization states of the signal). The linear operator _
in Eq. (1) represents optical filtering; it may also
account for a compensating device. The compensating
part of the linear operator, _c , is applied first, i.e.,
before filtering described by _f , resulting in _ = _f_c .
Ideally, I takes two distinct values depending on
whether the information slot is vacant or filled. How-
ever, the impairments enforce deviations of I from
those fixed values. If the output signal intensity exceeds
the decision level Id , then “1” is associated with the slot,
otherwise the slot is labeled “0.” Sometimes the infor-
mation is lost; i.e., the initial “1” is detected as “0” at
the output or vice versa. The BER is the probability of
such events that naturally depends on a specific realiza-
tion of birefringent disorder in the fiber. BER must be
extremely small to guarantee successful system perfor-
mance. It has been demonstrated in [9] that anoma-
lously high BER originates solely from the “1  0”
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events. We denote the probability of such events by B
and study its sensitivity with respect to disorder.

In this letter we restrict ourselves to the linear prop-
agation regime, when the output signal Y(t) can be rep-
resented as a sum of two contributions: j, related to the
noiseless evolution of the initial pulse, and the noise-
induced part f. We consider the cases of distributed or,
alternatively, lumped amplification with the fiber length
Z substantially exceeding the interamplifier separation
(span length) within the same scope. f becomes a zero-
mean Gaussian variable, completely characterized by
its two-point correlation function

(2)

insensitive to particular realizations of birefringent dis-
order and chromatic dispersion in the fiber. The product
DξZ represents the amplified spontaneous emission
(ASE) spectral density accumulated along the fiber.
The coefficient Dξ is introduced into Eq. (2) to reveal
the linear growth of the ASE factor with Z [8]. The
noise-independent part of the signal is governed by

(3)

z and d being the coordinate along the fiber and chro-
matic dispersion. The birefringence matrix can be rep-
resented as  = hj , where hj is a real three-compo-

nent field and  are the Pauli matrices. Averaging over
many states of the birefringent disorder that any fiber
goes through over time, or (alternatively) over the states
of birefringence of different fibers, one finds that hj(z)
is a zero-mean Gaussian field described by

(4)

If birefringent disorder is weak, the integral H =

 coincides with the PMD vector. Thus, Dm =

k2/12, where k is the so-called PMD coefficient.
In an operable communication system, typical dam-

age caused by disorder and noise must be small, i.e.,
typically both impairments can cause only a small dis-
tortion to a pulse; thus, the optical signal-to-noise ratio
(OSNR) and the ratio of the squared pulse width to the
mean squared value of the PMD vector are both large.
OSNR can be estimated as I0/DξZ, where I0 =

 is the initial pulse intensity, the integration

being performed over a single slot populated by an
ideal pulse, encoding “1.” Typically, B fluctuates
around B0, the zero-disorder (hj = 0) value of B. A con-
venient auxiliary dimensionless object, Γ =
(DξZ)ln(B/B0)/I0, depends on the birefringent disorder
and the initial signal shape, as well as the details of the
compensation and detection procedures; it is, however,
insensitive to noise. Since the OSNR is large, even
weak disorder can generate a strong increase in the
value of B. This is why a perturbative (with respect to

φα t1( )φβ* t2( )〈 〉 DξZδαβδ t1 t2–( ),=

∂zj m̂ z( )∂tj id z( )∂t
2j–– 0,=

m̂ σ̂ j

σ̂ j

hi z1( )h j z2( )〈 〉 Dmδijδ z1 z2–( ).=
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h) calculation of Γ gives the most essential part of the
PDF 6(B) of B. If no compensation is applied, one gets
Γ ~ H3/b, b being the pulse width, and the initial signal
is assumed to be linearly polarized. In the simplest case
of “setting of the clock” compensation, one arrives at

Γ ~ (  + )/b2. This yields the powerlike tail of the
PDF of B [9]. Higher order compensation leads to Γ ~
(H/b)p, where p is an integer exceeding by one the
degree of compensation, provided no additional cancel-
lations occur, and one gets the following asymptotic
expression (tail) for the PDF 6(B) of B [10]:

(5)

where µp is a dimensional coefficient. Therefore, as
anticipated, compensation suppresses the PDF tail.
However, applying high-order compensation is not
very efficient, since the decrease in 6 is mild as p
increases.

The main purpose of this letter is to introduce more
efficient compensation strategies with the same number
of compensating degrees of freedom. As a first example
consider the following “periodic” scheme. One divides
the optical line into N segments, each having a length
l = Z/N, and apply the first-order compensation at the
end of each segment (as schematically shown in the
upper panel of figure, with “c” denoting the compensat-
ing elements). The noise-independent part of the com-
pensated signal for the “periodic compensation” strat-
egy is determined by

(6)

(7)

(8)
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Scheme of fiber-line-element installation corresponding to
the periodic and quasi-periodic compensation strategies.
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where Y0(t) is the input signal profile, η =  is

the integral chromatic dispersion, and the ordered prod-
uct on the right-hand side of Eq. (6) is taken over all the
N segments (T exp is the standard notation for the so-
called ordered exponential). The exponential factor _1n

represents the first-order compensation at the end of the
nth segment.

This periodic compensation is not very convenient
since it requires installation of compensating elements
at multiple places along the fiber. However, one can
naturally modify this scheme and have the same com-
pensating elements inserted subsequently, but all at
once, at the fiber output, as shown in the lower panel of
the figure. If the disorder profile hj is known (techni-
cally such end-point measurements are possible via the
anti-Stokes refraction technique [11]) one can have an
end-point, but multiple, compensation as _c = ,
leading to the following “quasi-periodic” modification
of Eq. (6):

(9)

The natural idea behind this quasi-periodic compensa-
tion is obvious: to construct (in the compensating part)
the best possible approximation (with a given number
of compensating degrees of freedom) for the inverse of

the ordered exponential … .
Note that the (quasi-)periodic compensation does

not influence the noise-dependent part of the signal;
i.e., _cf has the same correlation function (2) as f.
Therefore, one arrives at the same expression
ln(B/B0) = ΓI0/(DξZ), with a new h-dependent factor Γ.
Furthermore, in the main region of interest Γ can be
analyzed perturbatively, just as in [9, 10]. Expanding
the factors in Eq. (6) up to the second order and making
use of Eqs. (1), (2) one derives

(10)

where an = (n – 1)l. Here, the dimensionless coefficient

 is related to the output signal chirp produced by an
initial chirp and the nonzero integral chromatic disper-
sion η. As follows from Eq. (9), the same expression (10)
is obtained in the second order for the quasi-periodic
case. Substituting Eq. (10) into the expression for B and
evaluating the PDF of B, with the Gaussian statistics of
h described by Eq. (4), leads to the following expres-
sion for the tail of the PDF of B:

(11)

Equation (11) holds for ln(B/B0) @ DmI0/[Dξb2]. The
exponent α in Eq. (11) contains an additional factor N
compared to the expression for the first order end-point
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compensation, i.e., the (quasi-)periodic compensation
makes the tail of 6(B) steeper. It is instructive to com-
pare the outage probability for the periodic case with
the case of higher order end-point compensation
described by Eq. (5). One finds that for higher order
compensation, i.e., when N ~ ln(B∗ /B0)I0/DξZ, the
(quasi-)periodic scheme becomes more efficient com-
pared to the straight Nth order compensation scheme. If
the output signal is not chirped,  = 0 and the leading
term in the expansion of Γ in h/b is of the third order.
Additional filtering efforts can be made to enforce the
output pulse symmetry under the t  –t transforma-
tion, thus removing the third-order term. Then the lead-
ing term in Γ will be of the fourth order in h/b. Finally,
even better compensation can be achieved if the stan-
dard high-order compensation approach and the (quasi-
)periodic ones are combined, i.e., if in the (quasi-)peri-
odic setting considered above, one uses higher order
compensation instead of the first order one. Formally,
this hybrid case means that the first-order compensa-
tion operators _1n in Eqs. (6), (9) should be substituted
by higher order compensation operators _cn . In the
hybrid periodic case, Γ can be written as the sum of

Γn ~ ( )p, and, since h is short-correlated,

Γn related to different segments are statistically inde-
pendent. This leads to the following expression for the
PDF tail:

(12)

which is valid at DξZ/I0ln(B/B0) @ N1 – p/2(DmZ/[µpb2])p/2.
Note that an important computational step, leading

to our major results in Eqs. (11), (12), was the evalua-
tion of Γ perturbatively in h. In addition, in the periodic
case, Γ is a direct sum of each segment contribution Γn ,
and the perturbative treatment applies separately to
each Γn , requiring the weakness of the PMD effect at
each segment only, i.e., DmZ/N ! b2. Therefore, one
concludes that even an optical line with practically
inoperable (without compensation) characteristics
(DmZ, which is on the order of or larger than b2) can still
be used for transmission if N is sufficiently large. More-
over, this observation on the applicability of Eqs. (11),
(12) also extends to the quasi-periodic case, in the sense
that Eqs. (11), (12) provide an upper bound for the PDF
of BER. This is due to an additional, oscillatory with h,
suppression of Γn in the quasi-periodic vs. periodic
case. This suppression is especially important for seg-
ments strongly separated from their compensating seg-
ments.

For illustration purposes, let us briefly discuss the
example of a fiber line with typical bit error probability,
B0 = 10–12, and  = 0.14. Assume also that the PMD

coefficient, k = , is 1.5 ps/ ; the pulse

µ2'

µ2'

zh/bd
an

ln∫
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--------------------------------------------------------,–∼ln
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width, b = 25 ps; and fiber length, Z = 2.500 km. Then
the dimensionless parameter DmZ/b2 measuring the rel-
evant strength of the PMD effect is O(1); i.e., without
compensation, the PMD effect is large, pulses are
destroyed, and no successful transmission is possible:
S(B) = 0(1) for any B > B0. If, however, the (quasi-)peri-
odic compensation with N = 10 compensation units is
utilized, the relevant strength of the PMD effect is sub-
stantially reduced, so that DmZ/[b2N] ≈ 0.1, and S(B)
begins to decay with B at B > B0. The system perfor-
mance can be evaluated in terms of the outage probabil-
ity 2, the probability of B being larger than B∗ : 2 =

. One derives from Eq. (11) that in the

(quasi-)periodic case, 2 ≈ 0.06 for B∗  = 10–8 and 2 ≈
0.02 for B∗  = 10–6; i.e., the system performance is sub-
stantially improved (to become not yet perfect, but
already satisfactory).

To conclude, in this letter we have proposed a
(quasi-)periodic compensation scheme which appears
to be a strong alternative to the standard higher order
compensations. The efficiency of the scheme has been
demonstrated. Even though technical implementation
of this procedure needs expensive equipment, we antic-
ipate that if this compensation technique is imple-
mented, the reduction in the probability of extreme out-
ages will guarantee an essential overall benefit.

B6 B( )d
B*
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